Minggu, 18 Desember 2011

Mathematically Rigorous Physics



The term 'mathematical' physics is also sometimes used in a special sense, to denote research aimed at studying and solving problems inspired by physics within a mathematically rigorous framework. Mathematical physics in this sense covers a very broad area of topics with the common feature that they blend pure mathematics and physics. Although related to theoretical physics, 'mathematical' physics in this sense emphasizes the mathematical rigour of the same type as found in mathematics. 


On the other hand, theoretical physics emphasizes the links to observations and experimental physics which often requires theoretical physicists (and mathematical physicists in the more general sense) to use heuristic, intuitive, and approximate arguments. Such arguments are not considered rigorous by mathematicians. Arguably, rigorous mathematical physics is closer to mathematics, and theoretical physics is closer to physics. This also has an institutional side: Many mathematical physicists are members of mathematics departments.


Such mathematical physicists primarily expand and elucidate physical theories. Because of the required rigor, these researchers often deal with questions that theoretical physicists have considered to already be solved. However, they can sometimes show (but neither commonly nor easily) that the previous solution was incorrect.
The field has concentrated in four main areas:
  1. quantum field theory, especially the precise construction of models;
  2. statistical mechanics, especially the theory of phase transitions; and
  3. nonrelativistic quantum mechanics (Schrödinger operators), including the connections to atomic and molecular physics.
  4. quantum information theory
The effort to put physical theories on a mathematically rigorous footing has inspired many mathematical developments. For example, the development of quantum mechanics and some aspects of functional analysis parallel each other in many ways. The mathematical study of quantum statistical mechanics has motivated results in operator algebras. The attempt to construct a rigorous quantum field theory has brought about progress in fields such as representation theory. Use of geometry and topology plays an important role in string theory.

Tidak ada komentar:

Posting Komentar